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WG3 Objectives

• Optimise and standardize the use of state-of-the-art ML techniques 
(WG1) on benchmark data (WG2) to provide SOPs specific to 

• various microbiome data types (16S rRNA amplicons, shotgun metagenomics 
and metatranscriptomics), 

• human body ecosystems (high/low diversity and variability) and
• research questions (diagnostics, prognostics, causality)

• Investigate opportunities for automating the established SOPs into 
pipelines for translational use by clinicians and non-experts.



Deliverables

• D3.1: A decision tree of ML/Stats methods along with optimised
parameters suitable for various data types, ecosystems and research 
questions (disseminated through Web-portal and GitHub).

• D3.2: A publication and white-paper describing the SOPs emanating 
from D3.1.

• D3.3: A report outlining areas suitable for automation



Administrative information

• Members: 85 (according to the slack channel )
• Slack channel

• Started on Feb, 2020
• > messages

• Leadership
• Magali Berland – Michelangelo Ceci – Magali Berland – Christian Jensen –

Giorgos Papoutsoglou (and Sonia always in support!!)
• Meetings

• WG: Present in all meetups + 1 dedicated on in Brussels right before COVID hit!
• Zoom: every month from Sep. 21 onwards



Dissemination
• Workshops and training schools

• Organizers, trainers and trainees at ML4Microbiome workshops

• STSMs
• Eliana Ibrahimi, NOVA MATH, FCT NOVA, Lisbon, Portugal
• Thomas Klammsteiner, University of Ljubljana / Biotechnical Faculty
• Andrea Mihajlovic, University of Bari, Department of Computer Science

• Papers/Conference presentations
• Report of the ML4Microbiome Workshop 2021 - Statistical and Machine Learning Techniques for Microbiome Data Analysis. EMBnet Journal 27, 

e1012http://dx.doi.org/10.14806/ej. 
• Data preprocessing and transformation techniques applied in machine learning modeling of human microbiome data. Preprint. 
• Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and 

Treatment. Front Microbiol. 2021 Feb 19;12:634511. doi: 10.3389/fmicb.2021.634511. PMID: 33737920; PMCID: PMC7962872.
• High-performance computing lifts the understanding of insect-based gut microbiomes. Presented at the Austrian-Slovenian HPC Meeting 2021. 

Online.
• Searching for consensus in black soldier fly microbiomes. Presented at the 18th International Symposium on Microbial Ecology (ISME18). 

Lausanne, Switzerland.
• ...

https://doi.org/10.3389/fmicb.2021.634511


Recap



Benchmark Datasets
• Ecosystems: gut

• Research question: CRC diagnosis, CRC vs. Adenoma vs. Control

• Shotgun: Saeed (-), Microbiome atlas (-), Public domain curated by Magali’s group (+)
• ~1600 samples, 755 Controls, 183 Adenoma, 662 CRC
• AUT, CHN, FRA, GER, IND, ITA, JPN, USA
• https://doi.org/10.57745/7IVO3E

• 16S data (Laura Marcos)
• 3 studies, rRNA V4 region
• 709 samples, 277 Controls, 241 Adenoma, 191 CRC
• https://hackmd.io/@laurichi13/rJt3ewZut

https://doi.org/10.57745/7IVO3E
https://hackmd.io/@laurichi13/rJt3ewZut


Analysis results (1)
• Karel Hron

• Trying different compositionality normalization methods
• No clear performance increase 

• Marta Lopez
• Checking batch effect correction methods (combat, quantile normalization) for addressing the Country effect
• Removed the effect, no clear improvement in modeling performance
• Different preprocessing 

• Julia Eckenberger
• Pipelines: 2 norm. methods, 1 filtering, 3 modeling methods
• Provided and R script 
• The type of normalization only had a small effect on the tree-based models while SVMs clearly preferred CLR-

transformed data



Analysis results (2)
• Magali Bertland

• Testing different preprocessing methods (transformation + filtering) on the WG3 
shotgun data

• 7 different modeling methods

• Sonia Tarazona
• Testing different preprocessing methods (transformation + filtering) on 6 different 16S 

datasets
• 2 different modeling methods

• Alberto Tonda
• Testing univariate feature selection
• TPOT autoML



Analysis results (3)

• Christian Jensen
• Working on some other 16S datasets
• Doing robust PCA, no feature selection
• Random forest, SVMs
• Best model: Compositional transformation + SVMs

• Michelangelo Ceci – Gianvito Pio
• Analysing the 16S datasets
• Feature selection + Modeling (Random forest + boosting trees)

• Giorgos Papoutsoglou
• Using JADBio on WG3 shotgun data



Paper drafting

• Plan started after the Tirana meeting
• Turku – Budapest established the final concept to describe

• How a data analyst currently executes a microbiome data analysis? 
[Normalization/Filtering –> Feature Selection –> Modeling]

• For each step in the workflow describe the
• biological, methodological, and technical problems/constraints pertaining (or not) to microbiome data

• algorithms and their hyperparameters designed for each ML task (linear vs nonlinear ones, 
if applicable)

• Put everything together
• Estimation protocols
• Explainability of results



Budapest brainstorming discussion

Data description

Workflow Put all together



Current state - Results



Decision tree

• Started drafting, Sep. ‘21
• Decided not to include any bioinformatic analysis (data preparation)

• Could not reach to a consensus
• Too many methods available 
• It would mainly have been based on known trees for ML analysis

• Decided to write Practical Advices for each of the analysis steps



Conference: SEIO 2022 (Granada, Spain)
Oral presentation: Disease prediction from microbiome data
Authors: Sonia Tarazona & Camila Nieto

 Data: Shotgun Illumina Sequencing (stool samples)  6 datasets (healthy/diseased) from Pasolli et al., PLoS
Computational Biology (2016): Cirrhosis, Colorectal cancer, IBD, Obesity and T2 Diabetes.   n ∈ [100,350]

 Preprocessing: Comparison of 4 strategies combining two prevalence filters (removing zeroes and 20%) and 
two normalizations (TSS and CLR). In all cases, outlier detection with PCA.

 ML methods: PLS-DA and RF (also SVM but discarded because of low performance). Hyperparameters
optimization through repeated k-fold CV (k = 10, r = 5) and F1-score as error metric. No variable selection. 

 Results
 In general, 20% prevalence filtering (S2) combined with CLR (N2) rendered better F1-score.
 Sparsity benefits classification.
 For balanced classes, pre-processing effect is not important.
 For unbalanced classes and/or lower sample sizes, S2-N2 works significantly better.



MetaGenoPolis
Centre de recherche INRAE de Jouy-en-
Josas
Domaine de Vilvert, Bât.325 
78 350 Jouy-en-Josas France

by

Evaluation of 
preprocessings
for machine 
learning 
applications
Giacomo Vitali –Stéphane 
Béreux
Magali Berland



@MgpsLab

Machine Learning Model tested

• Random Forest

• PLS – Partial least square

• Earth – spline regression (can be appied to classification also)

• Pam – Partition around medioids (normally a clustering algorithm)

• Glmboost - Gradient Boosting with Component-wise Linear Models

• Glmnet – Generalized linear model with elastic net penality

• GBM – Gradient boosting machine



@MgpsLab

Dataset: colorectal cancer (CRC) use-case

Shotgun data
● 1600 samples, from 10 publicly available studies
● 8 countries, over 3 continents (Europe, America, Asia)
● All sequences have been downloaded and processed the same way

○ Mapping of the reads onto the 10.4 million genes IGC2 reference catalog
○ Generation of the gene abundance profiling table (rarefaction and FPKM 

normalization)
○ Generation of the Metagenomic Species (MGS) abundance table from 100 

marker genes
● Metadata available: health status and phenotype (healthy, patient, 

adenoma, CRC stage), country, BMI, gender, age, gene and MGS 
richness

● Accessible here: https://doi.org/10.57745/7IVO3E

https://doi.org/10.57745/7IVO3E


@MgpsLab

Introduction to the filtering process

• A fixed threshold for fpkm values: 
retain features with a total abundance 
across samples >  5e-06 – Always 
applied

• A variable threshold of prevalence (0-
0.5): retained features with X 
prevalence across samples 



@MgpsLab

Best models comparison for a range of filtering values

Sensitivity Specificity

No preprocessing

Main messages:
- A small filtering slightly improved the performances
- A strong filtering decreased the performances
- No preprocessing at all is also a valid option



@MgpsLab

Compositional data – CLR transformation

None

Main messages:
- CLR transformation slightly improved the performances for PLS model
- For the majority of the models, the CLR transformation decreased the performances



@MgpsLab

Thanks



Working with COST data (WG3)
• Research question: CRC diagnosis

• ~1600 samples, 755 Controls, 183 Adenoma, 662 CRC
• AUT, CHN, FRA, GER, IND, ITA, JPN, USA

• Results
• Variable AUCs (0.63-0.9)
• Lot’s of technical artifacts

• Country: split samples
• DE: instrument model
• IND: control vs case
• JPN: timepoint

• Signatures: 8 species up to 25
• SES + Random Forests seem to work very nicely
• https://docs.google.com/spreadsheets/d/1mREhuCoAj5SmcJ1bUT_El7dGlQ2UWQiO/edit?usp=drive_link&ouid

=115018265883606062272&rtpof=true&sd=true

23

https://docs.google.com/spreadsheets/d/1mREhuCoAj5SmcJ1bUT_El7dGlQ2UWQiO/edit?usp=drive_link&ouid=115018265883606062272&rtpof=true&sd=true


Responses from WG3 members

• Excluded those who did not do a comparative analysis
• WG3 Data Analysis.xlsx - Google Sheets

https://docs.google.com/spreadsheets/d/1iWHNIN-BD2J2HCx1o4CxkhInjgudFrlT/edit#gid=2043426938


Take home messages

• Sample size and feature size define the methods to try
• Preprocessing

• Compositional  preprocessing/filtering does not affect the predictive 
performance

• check the selected features?

• Feature selection 
• important for identifying technical artefacts
• SES is a good starting point

• Modeling
• Random Forests are a good starting point



Useful links
• Slack channel: https://ca18131.slack.com/

• Shotgun dataset: https://doi.org/10.57745/7IVO3E

• 16S dataset: https://hackmd.io/@laurichi13/rJt3ewZut

• Bioinformatic processing for shotgun data: 
https://ca18131.slack.com/files/UUNS11R38/F02NBMW5KSM/2021-11-17-bioinformatic-
processing.pdf

• Bioinformatic processing for 16S data: 
https://ca18131.slack.com/files/U015ZFHBXEW/F02RDAMGKTJ/16sdataset_processing.pdf.pdf

• WG3 (white) Paper: 
https://docs.google.com/document/d/1tfL58ckp43XDrSglykYejOSqC2_tU4KCC2ugs9TduPk/edit?us
p=sharing

https://ca18131.slack.com/archives/CUJKK9Y5T
https://doi.org/10.57745/7IVO3E
https://hackmd.io/@laurichi13/rJt3ewZut
https://ca18131.slack.com/files/UUNS11R38/F02NBMW5KSM/2021-11-17-bioinformatic-processing.pdf
https://ca18131.slack.com/files/U015ZFHBXEW/F02RDAMGKTJ/16sdataset_processing.pdf.pdf
https://docs.google.com/document/d/1tfL58ckp43XDrSglykYejOSqC2_tU4KCC2ugs9TduPk/edit?usp=sharing


THANKS !!!
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