

Working Group 3: Optimisation and standardisation

Cork, June 8th, 2023

Giorgos Papoutsoglou, WG3 Lead

WG3 Objectives

- Optimise and standardize the use of state-of-the-art ML techniques (WG1) on benchmark data (WG2) to provide SOPs specific to
 - various microbiome data types (16S rRNA amplicons, shotgun metagenomics and metatranscriptomics),
 - human body ecosystems (high/low diversity and variability) and
 - research questions (diagnostics, prognostics, causality)
- Investigate opportunities for automating the established SOPs into pipelines for translational use by clinicians and non-experts.

Deliverables

- D3.1: A decision tree of ML/Stats methods along with optimised parameters suitable for various data types, ecosystems and research questions (disseminated through Web-portal and GitHub).
- D3.2: A publication and white-paper describing the SOPs emanating from D3.1.
- D3.3: A report outlining areas suitable for automation

Administrative information

- Members: 85 (according to the slack channel 🙂)
- Slack channel
 - Started on Feb, 2020
 - > messages
- Leadership
 - Magali Berland Michelangelo Ceci Magali Berland Christian Jensen Giorgos Papoutsoglou (and Sonia always in support!!)
 - Meetings
 - WG: Present in all meetups + 1 dedicated on in Brussels right before COVID hit!
 - Zoom: every month from Sep. 21 onwards

Dissemination

- Workshops and training schools
 - Organizers, trainers and trainees at ML4Microbiome workshops
- STSMs
 - Eliana Ibrahimi, NOVA MATH, FCT NOVA, Lisbon, Portugal
 - Thomas Klammsteiner, University of Ljubljana / Biotechnical Faculty
 - Andrea Mihajlovic, University of Bari, Department of Computer Science
- Papers/Conference presentations
 - Report of the ML4Microbiome Workshop 2021 Statistical and Machine Learning Techniques for Microbiome Data Analysis. EMBnet Journal 27, e1012http://dx.doi.org/10.14806/ej.
 - Data preprocessing and transformation techniques applied in machine learning modeling of human microbiome data. Preprint.
 - Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Front Microbiol. 2021 Feb 19;12:634511. doi: <u>10.3389/fmicb.2021.634511</u>. PMID: 33737920; PMCID: PMC7962872.
 - High-performance computing lifts the understanding of insect-based gut microbiomes. Presented at the Austrian-Slovenian HPC Meeting 2021. Online.
 - Searching for consensus in black soldier fly microbiomes. Presented at the 18th International Symposium on Microbial Ecology (ISME18). Lausanne, Switzerland.

• ...

Recap

Benchmark Datasets

- Ecosystems: gut
- Research question: CRC diagnosis, CRC vs. Adenoma vs. Control
- Shotgun: Saeed (-), Microbiome atlas (-), Public domain curated by Magali's group (+)
 - ~1600 samples, 755 Controls, 183 Adenoma, 662 CRC
 - AUT, CHN, FRA, GER, IND, ITA, JPN, USA
 - <u>https://doi.org/10.57745/7IVO3E</u>
- 16S data (Laura Marcos)
 - 3 studies, rRNA V4 region
 - 709 samples, 277 Controls, 241 Adenoma, 191 CRC
 - https://hackmd.io/@laurichi13/rJt3ewZut

Analysis results (1)

- Karel Hron
 - Trying different compositionality normalization methods
 - No clear performance increase
- Marta Lopez
 - Checking batch effect correction methods (combat, quantile normalization) for addressing the Country effect
 - Removed the effect, no clear improvement in modeling performance
 - Different preprocessing
- Julia Eckenberger
 - Pipelines: 2 norm. methods, 1 filtering, 3 modeling methods
 - Provided and R script
 - The type of normalization only had a small effect on the tree-based models while SVMs clearly preferred CLRtransformed data

Analysis results (2)

- Magali Bertland
 - Testing different preprocessing methods (transformation + filtering) on the WG3 shotgun data
 - 7 different modeling methods
- Sonia Tarazona
 - Testing different preprocessing methods (transformation + filtering) on 6 different 16S datasets
 - 2 different modeling methods
- Alberto Tonda
 - Testing univariate feature selection
 - TPOT autoML

Analysis results (3)

• Christian Jensen

- Working on some other 16S datasets
- Doing robust PCA, no feature selection
- Random forest, SVMs
- Best model: Compositional transformation + SVMs
- Michelangelo Ceci Gianvito Pio
 - Analysing the 16S datasets
 - Feature selection + Modeling (Random forest + boosting trees)
- Giorgos Papoutsoglou
 - Using JADBio on WG3 shotgun data

Paper drafting

- Plan started after the Tirana meeting
- Turku Budapest established the final concept to describe
 - How a data analyst currently executes a microbiome data analysis? [Normalization/Filtering -> Feature Selection -> Modeling]
 - For <u>each step</u> in the workflow describe the
 - biological, methodological, and technical problems/constraints pertaining (or not) to microbiome data
 - algorithms and their hyperparameters designed for each ML task (linear vs nonlinear ones, if applicable)
 - Put everything together
 - Estimation protocols
 - Explainability of results

Budapest brainstorming discussion

Current state - Results

Decision tree

- Started drafting, Sep. '21
 - Decided not to include any bioinformatic analysis (data preparation)
- Could not reach to a consensus
 - Too many methods available
 - It would mainly have been based on known trees for ML analysis
- Decided to write Practical Advices for each of the analysis steps

Conference: SEIO 2022 (Granada, Spain) Oral presentation: Disease prediction from microbiome data Authors: Sonia Tarazona & Camila Nieto

- <u>Data</u>: Shotgun Illumina Sequencing (stool samples) → 6 datasets (healthy/diseased) from Pasolli et al., PLoS Computational Biology (2016): Cirrhosis, Colorectal cancer, IBD, Obesity and T2 Diabetes. n ∈ [100,350]
- <u>Preprocessing</u>: Comparison of 4 strategies combining two prevalence filters (removing zeroes and 20%) and two normalizations (TSS and CLR). In all cases, outlier detection with PCA.
- ML methods: PLS-DA and RF (also SVM but discarded because of low performance). Hyperparameters optimization through repeated k-fold CV (k = 10, r = 5) and F1-score as error metric. No variable selection.

Results

- In general, 20% prevalence filtering (S2) combined with CLR (N2) rendered better F1-score.
- Sparsity benefits classification.
- For balanced classes, pre-processing effect is not important.
- For unbalanced classes and/or lower sample sizes, S2-N2 works significantly better.

metagenopolis **mgpS**.eu

MetaGenoPolis

Centre de recherche INRAE de Jouy-en-Josas Domaine de Vilvert, Bât.325 78 350 Jouy-en-Josas France Evaluation of preprocessings for machine learning applications

Giacomo Vitali – Stéphane Béreux

- Random Forest
- PLS Partial least square
- Earth spline regression (can be appied to classification also)
- Pam Partition around medioids (normally a clustering algorithm)
- GImboost Gradient Boosting with Component-wise Linear Models
- Glmnet Generalized linear model with elastic net penality
- GBM Gradient boosting machine

Shotgun data

- 1600 samples, from 10 publicly available studies
- 8 countries, over 3 continents (Europe, America, Asia)
- All sequences have been downloaded and processed the same way
 - \circ $\,$ Mapping of the reads onto the 10.4 million genes IGC2 reference catalog $\,$
 - Generation of the gene abundance profiling table (rarefaction and FPKM normalization)
 - Generation of the Metagenomic Species (MGS) abundance table from 100 marker genes
- Metadata available: health status and phenotype (healthy, patient, adenoma, CRC stage), country, BMI, gender, age, gene and MGS richness
- Accessible here: <u>https://doi.org/10.57745/7IVO3E</u>

Introduction to the filtering process

 A variable threshold of prevalence (0-0.5): retained features with X prevalence across samples

Best models comparison for a range of filtering values

Main messages:

@MgpsLab

- A small filtering slightly improved the performances
- A strong filtering decreased the performances
- No preprocessing at all is also a valid option

Compositional data – CLR transformation

Main messages:

- CLR transformation slightly improved the performances for PLS model
- For the majority of the models, the CLR transformation decreased the performances

Working with COST data (WG3)

- Research question: CRC diagnosis
 - ~1600 samples, 755 Controls, 183 Adenoma, 662 CRC
 - AUT, CHN, FRA, GER, IND, ITA, JPN, USA
- Results
 - Variable AUCs (0.63-0.9)
 - Lot's of technical artifacts
 - Country: split samples
 - DE: instrument model
 - IND: control vs case
 - JPN: timepoint
 - Signatures: 8 species up to 25
 - SES + Random Forests seem to work very nicely
 - <u>https://docs.google.com/spreadsheets/d/1mREhuCoAj5SmcJ1bUT_El7dGlQ2UWQiO/edit?usp=drive_link&ouid</u> =115018265883606062272&rtpof=true&sd=true

j¦	JAD	Bio
----	-----	-----

Datasets Analyses		Applie	Applied Models								
			Search			Apply to All columns	~	Columns to display Name, Started, Dataset, M 👻		Export	t
Nan	ne	Started		Data	Metric	Metric Va	Outco	Туре	Progress	Actions	
1:1	CRC_no_t2_IND_GE	R_Typ 2023-0	6-02 14:56	CRC_no_t2	AUC	0.73	health_statu	ተ	FINISHED (100%)	•••	
ı:l	CRC_AUT_Pre	2023-0	5-31 14:27	CRC_AUT	AUC	0.90	health_statu	4	FINISHED (100%)		
1:1	CRC_FRA_Pre	2023-0	5-31 14:27	CRC_FRA	AUC	0.79	health_statu	ሱ	FINISHED (100%)		
::1	CRC_CHN_Pre	2023-0	5-31 14:27	CRC_CHN	AUC	0.74	health_statu	ሱ	FINISHED (100%)		
1:1	CRC_ITA_Pre	2023-0	5-31 14:26	CRC_ITA	AUC	0.63	health_statu	ሑ	FINISHED (100%)	= =, ∕ ×	
ı:I	CRC_IND_Pre	2023-0	5-31 14:26	CRC_IND	AUC	1.00	health_statu	ተ	FINISHED (100%)		
_								•			

Responses from WG3 members

- Excluded those who did not do a comparative analysis
- WG3 Data Analysis.xlsx Google Sheets

Take home messages

- Sample size and feature size define the methods to try
- Preprocessing
 - Compositional preprocessing/filtering does not affect the predictive performance
 - check the selected features?
- Feature selection
 - important for identifying technical artefacts
 - SES is a good starting point
- Modeling
 - Random Forests are a good starting point

Useful links

- Slack channel: <u>https://ca18131.slack.com/</u>
- Shotgun dataset: https://doi.org/10.57745/7IVO3E
- 16S dataset: https://hackmd.io/@laurichi13/rJt3ewZut
- Bioinformatic processing for shotgun data: https://ca18131.slack.com/files/UUNS11R38/F02NBMW5KSM/2021-11-17-bioinformatic-processing.pdf
- Bioinformatic processing for 16S data: https://ca18131.slack.com/files/U015ZFHBXEW/F02RDAMGKTJ/16sdataset_processing.pdf.pdf
- WG3 (white) Paper:

https://docs.google.com/document/d/1tfL58ckp43XDrSglykYejOSqC2_tU4KCC2ugs9TduPk/edit?us p=sharing

THANKS !!!