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Microbiome based onl16S
Region Sequencing

. Being highly conserved among prokaryotes, it
allows attachment of primers

« However, one organism, such as Escherichia
coli, could have more than one 16S region, some
of which are so similar to Shigella spp.’s that it
becomes impossible to distinguish between the
two, hence, could cause issues in annotation of
the particular sequence.



Long and Short Reads

« Ashort sequence from 16s region may affect the annotation.

Below sequence with the length of 199 bp belongs to one of the 16s
rRNA gene regions with 1550 bp of Bacillus velezensis strain AD-3
(NCBI-complete genome)
“CTTTATTGGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCG
GCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTG
CTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAA
CCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATA
CCGGATGCTTGTTTGAACCGCATGGT”

However, in reference based mapping, it could be mapped to other
Bacillus species, as well.



Annotation Database Inaccuracy

. The NCBI database, which is constantly being updated,
like other databases such as SILVA, is set up relying on
various phenotypic information like staining,
appearance...

« However, the scientific community is trying to change this
classification to genotype-based allocation of
prokaryotes.



Change in the Database

« Currently, some genera, even whole families are
being assiged to other upper taxonomic ranks. This
results with assigning less relative abundance values
to the upper taxonomic ranks before the change.

- Clostridiales (order) is completely removed from the
NCBI Entrez taxonomic database, having become a part
of Eubacteriales (order)

- Some Ruminococcus species (gnavus, lactaris and
torques) moved under Lachnocpriceae (family) and
Mediterraneibacter (genus)



Multi-omics: genotype -> phenotype mapping

* SNP * DNA methylation » Gene expression * Protein = Metabolite
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Processing of Biological Data

Phenome

= Cancer

* Metabolic
syndrome

* Psychiatric
disease
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Al/ML In Translational
Medicine
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Example Applications

Unsupervised hierarchical clustering (part of ACME analysis)

— l|dentified associations between BRAF mutant cell lines of
the skin lineage being sensitive to the MEK inhibitor

Seashore-ludlow B, Rees MG, Cheah JH, et al. Harnessing Connectivity in a Large-Scale

; Small-Molecule Sensitivity Dataset. Cancer Discov. 2015;5(11):1210-23.
o Spectral clustering by SNF
— ldentification of new medulloblastoma subtypes

Cavalli FMG, Remke M, Rampasek L, et al. Intertumoral Heterogeneity
within Medulloblastoma Subgroups. Cancer Cell. 2017;31(6):737-754.€6.

» Elastic net regression

— ldentification of BRAF and NRAS mutations in cell lines,
were among the top predictors of drug sensitivity for a MEK

. o - Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line
|nh|b|t0r Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Nature. 2012;483(7391):603-7.
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Challenges

[ Curse of Dimensionality
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Mirza B, Wang W, Wang J, Choi H, Chung NC, Ping P. Machine Learning
and Integrative Analysis of Biomedical Big Data. Genes (Basel).
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Challenges

[ Heterogenous Data
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Challenges

[ Class Imbalance ]

v

b

v

v

Data ) Cost-Sensitive Ensemble N Evaluation
Sampling Learning Learning Measure-Based
+ RUS (Down Sample) + Mnet + Ensemble with WMV + Diablo(BER)
+ SMOTE (Up Sample) * UNIPred - EasyEnsemble « SNN(MCC,F-score)
* Hybrid (Down{Up * Spotlite « Balanced Cascade « FPRF(Gmean)
Sample) + SVM_Weight + Ensemble WELM « WMV(F-score)

Mirza B, Wang W, Wang J, Choi H, Chung NC, Ping P. Machine Learning
and Integrative Analysis of Biomedical Big Data. Genes (Basel).

2019;10(2)



Microbiome plays an important role in colorectal
cancer (CRC) development

Numerous studies have
verified that gut microbiota
can alter CRC
susceptibility and
progression since the gut
microbiota can have an
impact on colorectal
carcinogenesis by inducing
tumor proliferation.

Recent approaches for the
treatment of colorectal
cancer, various strategies
are applied that consider
the microbiome diversity in
the patient—such as
dietary interventions,
antibiotic treatments,
probiotics, prebiotics, and
postbiotics

*  EPIGENETIC ALTERATIONS

COLORECTAL CANCER

— I o

*  GENETIC MUTATIONS

Host genetics

*  Geographical location

+  Gender V. . ti
*  Immunity: innate/adaptive Host Environment . Maternal transmission
Body mass index (BMI) | Family
*  Stochastic i P * . Driver pathogen

*  Passenger pathogen
*  Compositional state
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i Lactobacillus . R .
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E. Saus et al. Microbiome and colorectal cancer:
Roles in carcinogenesis and clinical potential,
Molecular Aspects of Medicine, Volume 69, 2019



Using traditional biostatistical methods for targeting the microbiota
for providing new opportunities involving tailored therapies for

individual patients

Recently, it has been published that
specific bacteria have been causing
chemoresistance. The most
commonchemotherapeutic drug given
to patients with colorectal cancer is 5-
fluorouracil, which dissolves with the
presence of bacteria such as
Fusobacterium nucleatum,
Escherichia coli, or Bacteroides
fragilis in the gut microbiome and thus
it is not efficient. Lately, the treatment
of colorectal cancer patients has been
prolonged due to the usage of
antibiotics such as ampicillin, colistin,
and streptomycin to suppress
pathogenic bacteria and promote
immunotherapy outcomes.

Screening
biomarker

Prognostic
and

predictive
Gut // biomarker

microbiome

for CRC
treatment

Modulation
for CRC
prevention



Our study — Data preprocessing

Dataset article: “Gut microbiota in patients after surgical treatment”

Jin, Y et al. Gut Microbiota in Patients after Surgical Treatment for Colorectal Cancer. Environ. Microbiol. 2019, 21, 772—-783.

We preprocessed the datased by removing the adapter and barcode sequences and the
amplicon sequence primer sets (V3—-V4). For this purpose, we used the BBMap (v.38.90) tool
[23]. We applied this approach due to the errors that can occur when the primer sequences
are accepted as amplicon ends. The aforementioned approach can produce incorrect
consensus sequences and influence the taxonomic assignment.

D
raw data
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SILVA
database
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removal process
BOMA

Y

reannotation
DADA2, Phyllodes

w

Clinical Metadata
(Supplementary
materials)

Figure 1, Data preprocessing and transformation.
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Our study — Methodology
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Our study — ML Modeling
Screenlng Phase

We applied naive Bayes, logistic regression, K-nearest neighbor, support vector
machine with principal component analysis (PCA), and decision tree algorithms.

» Referring to the performance metrics of the decision tree approach, we proceed
to explore the ensemble-based algorithms (Scikit-learn random forest classifier in
Python and tree ensemble learner in KNIME), building multiple decision trees and
taking advantage of the tree-related majority voting.

Table 1. Screening modelling phase algorithms overall accuracies

ML Algorithms Overall Accuracy
Naive Bayes 0.429
Logistic Regression 0.425
K-Nearest Neighbors 0.325
Support Vector Machine 0.497
Decision Tree 0.764

* The algorithm overall accuracy was selected as the main algorithm selection indicator



We concluded that the tree-
based algorithms accomplished
the highest scores compared
with the other technigues we
applied according to the
performance metrics.

We also tried XGBoost and
AdaBoost algorithms, which
resulted In no significant
improvements compared with
the  forest-based  approach
described above.

We identified the second-phase
Python-based random forest
classifier as the most performant
and selected the resulting most
important  features as a
reference set for  further
statistical analysis.

Our study — ML Modeling Results

Table 2. General ML modeling performance metrics for the resistant and non-tesistant CRC post-

operative individuals” group.

Environment ML Algorithms ~ Normalization/Scaling ~ Accuracy ~ Sensitivify ~ Specificity
Python Scikit-learn REC (P1) Standard Scaler 09 1.000 0833
Python Scikit-learn REC (P1) Z-5cote Normalizer 09 10 075

KNIME TEL (P1) Z-5core Normalizer 0.833 0778 10
Python Scikit-learn RFC(P2) Standard Scaler 0917 1.000 0833
KNIME TEL (P2) Z-5core Normalizer 09 1.000 08

RFC—Scikit-learn random forest classifier, TEL—Tree ensemble learner, P1—Phase 1 ML modeling, P2—Phase

ML modeling,

Table 3. Detailed ML modeling performance metrics for the resistant and non-resistant CRC post-

operative individuals’ group.

Precision Recall F1-Score
Environments and ML Resistant on- on- Resistant
Algorithms Resistant Resistant Resistant
Python Seikit-learn—REC (P1) 0.83 100 091 0.89
Python Scikit-learn—REC (P1) 0.75 100 0.86 092
KNIME—TEL (P1) 1 0778 0.750 0.875
Python Seikit-learn—REC (P2) 0.83 100 091 092
KNIME—TEL (P2) 0.800 1.000 0.889 0.909

RFC—Scikit-learn random forest classifier, TEL—Tree ensemble learner, P1—Phase 1 ML Modeling, P2—Phase

ML modeling,



Our study — Statistical Analysis
Results

Our taxonomic analysis of the raw data, assuming the improved taxonomical
precision since the bacterial references are constantly changing, resulted in 3603
different bacterial taxonomic units detected. Thus, the gut microbiome consisted
of 20 unique phyla, 35 classes, 72 orders, 119 families, and 259 unique genera

Lachnospiraceae FCS020 group
Lachnoclostridium

Clostridium sensu stricto 1
Oscillospiraceae-UCG-005
Desulfovibrio

Oscillospiraceae NK4A214 group
Bacteroides

Barnesiella

[Eubacterium] eligens group
Oscillospiraceae-UCG-002
Ruminococcus

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B Not Resistant M Resistant



Our study — Highly Contributing and Joint Features
Contribution AnaITysis Results
a

ble 4. Aggregated bacteria significance contributions to
the resistant class.

This study points out the
different perspectives
of treatment since our
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On Going Microbiome Project

Understanding the role of microbiome in
Drug resistance mechanisms-Joint Project

with Istituto Giannina Gaslini Genoa |

ALY

Multiomics Approaehesckaripersonalized
therapy in CRC patients —S. Korea-Turkey

Joint Project

The role of Microbiome in SMA Patients-

Joint Project with U. Milan

Skin Microbiome —Joint project with
UMASS
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