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Introduction to network medicine

A network can be described as a graph that shows the interconnections between a 
set of actors. Each actor is represented by a node and each connection between these 
nodes is represented by an edge. Network Analysis is a mathematical approach to study 
the relationships among nodes.

 Network medicine is an emerging area of research dealing with molecular and
genetic interactions, network biomarkers of diseases and therapeutic target discovery.

Network- based approaches [Barabasi A., Gulbahce N., Loscalzo J., 2010] have 
potential biological and clinical applications, from the identification of disease genes 
to better drug targets.



Why networks?

 Networks provide natural description of relation between various components.

 Network Analysis introduces a new way to study the medication use in a population.

 Example of medicine networks:

 Protein- protein network

 Protein domain co- occurrence network

 Metabolic networks

 Transcription networks

Co- expression networks



Co- expression networks

Gene co-expression networks can be used to associate genes of unknown function 
with biological processes, to prioritize candidate disease genes or to discern 
transcriptional regulatory programmes.

 The clinical and genomics data of this study were originally obtained from 99 
obesity participants who were recruited under a natural history protocol. 
Blood samples were collected from fasting participants.

 In this study we have information for 13276 different genes related to 99 patients.



Co- expression network

Figure 1. Construction and analysis of co- expression network



Network adjacency matrices and connectivity

For an unweighted network, the adjacency matrix is given by

𝑎𝑖𝑗 = {1 𝑖𝑓 𝑒𝑥𝑖𝑡 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)

𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒0
(1)

For an weighted unsigned network 𝑎𝑖𝑗 = {0 ≤ 𝑐𝑜𝑟 𝑖, 𝑗 ≤ 1 (2)

 Individual relationships between genes are defined based on correlation measures or mutual
information between each pair of genes. These relationships describe the similarity between
expression patterns of the gene pair across all the samples.

An adjacency matrix is constructed where each node represents a gene and each edge 
represents the presence and the strength of the co-expression relationship [Wigger L. et al. 

2016].

𝑖Scaled connectivity (scaled degree) is defined as 𝐶 𝐴 = ∑ 𝑖, 0 ≤ 𝐶 (𝐴) ≤ 1
𝑎𝑖𝑗

𝑗≠𝑖 𝑛−1
(3)



Transformations of the adjacency matrix

𝑖
𝑗

The power transformation raises each adjacency to a fixed power: 𝑃𝑜𝑤𝑒𝑟 𝐴,𝛽 = 𝑎𝛽

The power transformation can be used to emphasize large adjacencies at the expense of 
low ones.

The topological overlap transformation TOM(A) replaces each adjacency 𝑎𝑖𝑗 by a

normalized count neighbours that are shared by the nodes i,j.

 For a weighted network A, the topological overlap measure (TOM) is defined as:

𝑇𝑂𝑀𝑖𝑗 𝐴 =
∑𝑢≠𝑖,𝑗 𝑎 𝑖𝑢𝑎𝑢𝑗+𝑎 𝑖𝑗

𝑚𝑖𝑛 ∑ 𝑎𝑖𝑢,∑ 𝑎 𝑗𝑢𝑢 ≠𝑖 𝑢 ≠
𝑗

+1−𝑎𝑖𝑗
(4)

The topological overlap of two genes reflects their similarity in terms of the
commonality of the genes they connect to.



Weighted correlation- Descisions to make

Selecting a network type
Unsigned network- No differentiation between positive and negative correlations.

Choosing a correlation method
Different measures of correlation have been used to construct networks, including 

Pearson’s or Spearman’s correlations. Alternatively, least absolute error regression or a 
Bayesian approach can be used to construct a co-expression network. [Guttman M. et al.

2011.]

Picking a power term
Selection criterion: Pick lowest possible 𝛽 that leads to an approximately scale-free

network topology. [Wigger L. et al. 2016]
Few nodes with many connections.
Many nodes with few connenctions.

Degree distribution of nodes follows a power law: 𝑌 = 𝑘𝑋𝛼 (5)



Pick a power term for gene co-expression network

Figure 2. Pick a power term for gene co-expression network contraction

 [Langfelder P., Horvath S. at el. 2014]



Dissimilarity transformation for module detection

𝑃𝑜𝑤𝑒𝑟 (𝐴, 𝛽)  and 𝑇𝑂𝑀𝑖𝑗 𝐴 satisfy the conditions of an adjacency matrix.

The dissimilarity transformation Dissim(A) turns an adjacency matrix (which is a measure 
of similarity) into a measure of dissimilarity by subtracting it from 1.

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑗 𝐴 = 1 − 𝑇𝑂𝑀(𝐴) (5)

This transformation is useful for defining module detection procedures.

Dissim(A) does not satisfy our definition of an adjacency matrix since its diagonal
elements are equal to 0.



Module detection using hierarchical clustering

We define modules as clusters that result from using a pairwise node dissimilarity 𝑑𝑖𝑗.

For a gene network with adjacency matrix A, we use the topological overlap based
dissimilarity:

𝑖 𝑗 𝑖
𝑗

𝑑 = 𝐷𝑖𝑠𝑠𝑖𝑚 𝑇𝑂𝑀 𝐴 = 1 −
∑𝑢≠𝑖,𝑗 𝑎 𝑖𝑢𝑎𝑢𝑗+𝑎 𝑖𝑗

𝑚𝑖𝑛 ∑ 𝑎𝑖𝑢,∑ 𝑎 𝑗𝑢𝑢 ≠𝑖 𝑢 ≠
𝑗

+1−𝑎𝑖𝑗
(6)

This dissimilarity is used as input to average linkage hierarchical clustering.

We use two different branch cutting techniques: the constant-height cut method and the
dynamic tree cut method.

This module detection approach has been successfully used in several studies
[Langfelder P., Horvath S. at el. 2014]



Module detection using hierarchical clustering

Branches in the cluster tree 
(dendrogram) are referred to as 
modules.

 Dynamic Tree Cut algorithm has
discovered 34 clusters.

There are 79 genes that aren’t 
assigned to any of the clusters.

The biggest cluster has 3455 nodes 
and the smallest one has 38 nodes.

Figure 3. Gene clustering on TOM-based dissimilarity



Module eigengenes

To define the module eigengene of a module, we use the Singular Value Decomposition (SVD)
of the module expression matrix. [Langfelder P., Horvath S., at el. 2007]

 The gene expression matrix of the I-th module is denoted by

𝑋(𝐼) =
𝑖
𝑗

𝑎 𝐼
(7)

where the index 𝑖 = 1, 2,… ,𝑛𝐼 corresponds to module genes and the index 𝑗 = 1, 2,…𝑚
corresponds to samples.

 Gene expression profiles are standartised to mean 0 and variance 1.

 The singular value decomposition of 𝑋(𝐼) is denoted by

𝑋(𝐼) = 𝑈𝐷𝑉𝑇 (8)
where the columns of the orthogonal matrices U and V are the left- and right-singular
vectors, respectively.



Relating genes within a module to the module eigengene

𝐼
We assume that the singular values |𝑑𝑖 |are arranged in non-increasing order. Adapting
terminology from [Oldham M., Horvath S. at el. 2006, Fuller T. at el. 2007, Alter O.,

1Brown P. at el. 2000], we refer to the first column of 𝑉(𝐼) as the Module Eigengene: 𝐸𝐼 = 𝑣 𝐼

Although our approach emphasizes modules (represented by eigengenes) as the basic 
building blocks of eigengene networks, it is important to have a measure of how closely 
related a particular actual gene is to the eigengenes within the co-expression networks.

A natural measure is the eigengene-based connectivity 𝑘𝐸 𝑖 , defined as the correlation 
between the expression profile of the studied gene 𝑥𝑖 and the eigengene 𝐸𝐼.

𝑘𝐸𝐼 𝑗 = 𝑐𝑜𝑟(𝑥𝑗,𝐸𝐼) (7)

 The closer 𝑘𝐸 𝑖 is to 1 or -1, the stronger the evidence that the j-th gene is part of
the I-th module.



Merging of module eigengenes

Figure 4. Clustering dendrogram of genes, with dissimilarity based on topological overlap.

 Height cut is 0.25 corresponding
to correlation 0.75 to merge.

Merge modules whose 
dissimilarity is below the cutoff

 Constant height cut [Langfelder P., Zhang B., at el. 2008]



Gene dendogram and detected modules, before and after merging

Figure 5: Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with assigned 

merged module colours and the original module colours.

The Dynamic Tree Cut may identify 
modules whose expression profiles are 
very similar.

To quantify co-expression similarity 
of entire modules, we calculate their 
eigengenes and cluster them on their 
correlation.



Gene modules

Module Nr. of genes Module Nr. of genes

0 79 17 142

1 3455 18 139

2 1785 19 130

3 1544 20 124

4 1019 21 118

5 770 22 114

6 594 23 113

7 389 24 94

8 375 25 90

9 284 26 89

10 236 27 85

11 219 28 82

12 212 29 77

13 197 30 76

14 180 31 46

15 174 32 41

16 166 33 38

 34 modules

 79 genes that aren’t
assigned to any of the 
modules.

Module Nr. of genes

0 79

2 2177

3 4999

4 1019

5 989

7 1226

8 375

9 284

10 236

17 621

19 130

20 124

23 203
e 24 94

26 89

27 317

28 82

29 77

30 76

32 41

33 38

The biggest module 
has 3455 genes and th 
smallest one has 38 
genes.

 21 modules

79 genes that aren’t 
assigned to any of the 
modules.

The biggest module 
has 4999 genes and the 
smallest one has 38 
genes.

MergedModules

Table 1. Modules and genes
Table 2. Merged modules and genes



Merged Modules

Module 2

SEMA6B USP32 OCIAD1 TARBP1

IQCF3 SEMA5A TNIP1 LOR

CDH1 EDAR NFE2 LMAN1

SH3GL3 HLF KRT2 TFE3

KCNK9 RBM20 MAST2 C8orf46

Module 3

NBL1 CDK5R1 CLCA1 GDPD5

RBMXL1 BTG1 CACHD1 DHX35

IQCF5 AP2B1 DCAF11 FAM3A

FAM101A LINC00896 ZNF786 UBA5

MGAT4A ORC6 SFMBT2 ZFAND6

Module 4 

(Genes 

related to 

obesity)

PCSK1 DPYSL5 KLF17 BCHE

TENC1 LEP VAX2 ADAM6

ROBO4 AL832737 RASL10A APOE

FTO SLC30A3 LEPR ISLR2

INSIG2 MC4R PPARG PABL

Module 7

PYGL FANCE CECR6 ATG16L2

TBX15 TEX14 FAM49A NFAT5

DYRK1A AIFM2 TNFSF14 BC105019

SMCO4 XRCC4 PPM1D AGO4

PUS3 MAEA GREB1 AICDA

Table 3. Merged modules and genes



Potential driver genes in merged modules

Hub genes are those genes which

are highly connected within a module.

Module
Potential

drive genes
Gene Name

Diseases 

related with the 

gene

2 GAB2
Associated Binding  

Protein 2
Leukemia

3 TNFAIP8
TNF Alpha Induced  

Protein 8

Obesity  

module
FTO

Fat mass and obesity 

associated
Obesity

5 RAVER1
Ribonucleoprotein, 

PTB Binding 1

7 TXLNG2P
Taxilin Gamma 

Pseudogene, Y-Linked

8 TBX21
T-Box Transcription  

Factor 21
Asthma

9 MYH9
Myosin Heavy Chain 

9

10 DEDD2
Death Effector 

Domain Containing

Table 4. Potential driver genes in merged modules



Obesity module

Betweeness Degree Eigenvector Pagerank

FTO FTO FTO FTO

PJA2 LEPR MC4R MC4R

CDC25B USP12 WDTC1 WDTC1

ADIPOQ FNDC3B DEDD2 DEDD2

PPARG RNF14 PPARG PPARG

ZMYM2 PJA2 ZMYM2 ZMYM2

PCSK1 LEP PCSK1 PCSK1

LEP CDC25B LEP LEP

LEPR ADIPOQ LEPR LEPR

USP12 PPARG USP12 USP12

FNDC3B ZMYM2 FNDC3B FNDC3B

RNF14 PCSK1 RNF14 RNF14

INSIG2 NEDD9 NEDD9 NEDD9

MC4R POC1B POC1B POC1B

WDTC1 BLOC1S6 BLOC1S6 BLOC1S6

Table 5. Most central genes in obesity module Table 6. Eigengene-based connectivity for gene FTO

Eigengene-based connectivity for gene FTO

Module 𝒌𝑬𝑰 𝒋

Module 2 0.4722639

Module 3 0.385879

Module 5 0.4309691

Obesity 

Module
0.8428542

Module 7 0.3270049



Obesity module

Betweeness Degree Eigenvector Pagerank

49682.98 325 0.8332058 0.001014406

52707.62 331 0.8411068 0.00101559

53369.47 334 0.8457187 0.001019887

57272.49 335 0.8546221 0.001037688

59393.29 336 0.854761 0.001049783

64382.96 336 0.8589078 0.001050863

65115.81 338 0.8602408 0.001051442

65708.64 339 0.8637388 0.001053788

65900.6 341 0.8644066 0.001064638

71165.68 343 0.8656035 0.001067329

71995.89 344 0.8695161 0.001074412

76783.27 345 0.874374 0.001083625

76855.16 351 0.8903137 0.001091227

80357.86 361 0.9055079 0.001104277

83774.1 367 0.9152965 0.001147849

Betweeness Degree Eigenvector Pagerank

Betweeness 1
0.958263 0.964777

0.931858

Degree 0.958263 1
0.992599 0.942887

Eigenvector 0.964777 0.992599 1
0.962425

Pagerank 0.931858 0.942887 0.962425 1

Table 8. Correlation of centralities measures

Table 7. Centralities for most central nodes in obesity module



Conclusions

A network visualizes the relationships of a dataset in one graph. This unique ability of data 
representation is combined with many measures that are helpful for many research disciplines.

 Co-expression networks can be very powerful tools for identification of diseases genes.

Average linkage hierarchical clustering is used to detect modules in co-expression network giving as a parameter 
the topological overlap based dissimilarity.

 Dynamic Tree Cut algorithm had detected 34 different modules in our gene co-expression network.

 Module related to obesity has 1019 genes and the potential driver gene for this module was FTO.

Eigengene connectivity is used to measure the strength of the relationship of a particular gene to a given 
eigengene. In the obesity module, it was found that gene FTO is strongly connected with this module.

One great challenge for us would be to associate each module to a diseases and to find for each of the diseases 
the potential driver gene.



“We are all part of some networks”
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