ML4Microbiome workshop

Classifying microbiome and resistome using machine learning

Aldert Zomer 24 May 2022

World Organisation for Animal Health

Utrecht University

Who am I?

- Microbiologist and bioinformatician My computer is my lab.
- PhD University of Groningen, Oscar Kuipers, 2002-2
 Lactic acid bacteria transcriptomics / genomics
 - Lactic acid bacteria transcriptomics / genomics
- University College Cork, Ireland, Douwe van Sinderen, 2006-2010
 - Gut bacteria transcriptomics / genomics
 - Metagenomics
- RadboudUMC, Peter Hermans/Marien de Jonge, 2010-2014
 - Pneumococcus population genomics and gene essentiality (Tn-Seq)
 - Nasopharyngeal microbiome
 - Bacterial and host transcriptomics during infection
- Utrecht University, Jaap Wagenaar, 2014
 - Bacterial population (meta) genomics: Staphylococcus, E. co

1000s of genomes 6 weeks <40€ / genome

1 genome

2 years

100k € / genome

Effect of antimicrobials on resistome and microbiome

Bacterial population genomics

- Campylobacter
 - Campylobacter fetus Birgitta Duim and Linda van der Graaf
 - Discerning Environmental Pathways of Campylobacter Transmission (DEPiCT, DiSCOVER) with Lapo Mughini-Gras (RIVM)
 - Campylobacter plasmids Linda, Alison
- Salmonella / E. coli
 - Plasmid/strain transmission (STARCS, Full-Force)
 - Carbapenamase, colistin (JPI-TRIUMPH, BEWARE, COINCIDE)
 - ExPEC population genetics for vaccine development (Janssen)
 - APEC population genetics with Sjaak de Wit and Royal GD (COLIBRI)
 - Effect of residual antibiotics concentrations on selection of resistance (Resrisk)
- Staphylococcus
 - S. schleiferi/coagulans and pseudintermedius
 - S. aureus vaccine development (Janssen)
- Other
 - *B. pertussis* vaccination policy drives population genetics (Janssen)
 - First generation cephalosporins with David Speksnijder (MSD)

Linda van der Graaf -van Bloois

Jeroen Leus

Aram Swinkels

Soe Yu Naing

Metagenomics

- How does antimicrobial treatment and fecal transfer affect the resistome of horses – Equine sciences UU
- Rehabilitation of seals and their microbiome and resistome – UMCG
- Outcompeting MRSA from piglet noses (ExcludeMRSA/MRSAprevent) with Birgitta Duim
- Nanopore sequencing for rapid microbial diagnostics – VMDC, Els Broens
- Effect of diet change on the gut microbial community of a migratory shorebird – NIOZ KNAW Jan van Gils
- Quantifying the complex drivers of antibiotic resistance transfer by reusing (meta-) genomic databases Bas Dutilh -TBB

Roosmarijn Luiken

Mathijs Theelen

Ana Rubio Garcia

Abel Vlasblom

Marie de Wilde

Rick Beeloo

Microbiome in animal health and disease

.. to surveillance of pathogens and AMR in traditional and novel production animals...

From preservation and health status of wild animals

Example 1: Experimental Human Pneumococcal Carriage

Radboudumc

Pneumococcal disease

Determinants of pneumococcal carriage

Determinants of pneumococcal carriage

Crowding Smoke Other microbes in nasopharynx

Antibiotics Immunity

Other microbes in nasopharynx

Veterinary Medicine

Utrecht University

World Health Organization

for Animal Health

"Nasotypes" ?

At least 5 types observed

Staphyloccus dominated profile is negatively correlated with pneumococcus carriage

(also observed in larger qPCR study)

Pneumococcal carriers excluded and remaining subjects colonized

Microbiome longitudinally sampled

"Nasotypes" ?

Classifiers: the microbial density data – 200 of the most common ASVs

randomForest in R

Does colonization with *S. pneumoniae* cause a nasotype shift?

Classes: 'T0' samples, nasotypes

Classifiers: the microbial density data – 200 of the most common ASVs

randomForest in R

Pneumococcal colonization causes shifts away from original nasotype

Not specifically to a streptococcus dominated profile
 Pneumococcal carriers never switched to Profile C

Part 1 - Questions?

Read more -> Cremers et al. 2016, Microbiome

Short- and long-term effect of hospitalization and oral antimicrobial treatment on the equine faecal microbiome and resistome. By Mathijs Theelen /Roosmarijn Luiken

- Longitudinal sampling of 6 healthy ponies
- 16S amplicon sequencing
- Shotgun metagenomics selected samples

at the farm - in the clinic - TMS treatment - back to the farm

D0-13 D14-21 D22-26 D27-211

Shannon diversity (= alpha div.) decreases during treatment and seems to recover after several weeks

World Organisatio

Health

The microbiome composition (= beta div.) changes after treatment and is after 6 months still significantly

Verrucomicrobia

0.015

0.010

0 000

Random Forest prediction: after 6 months a different microbiome than at the start of the study

Classes: 'start of study' and 'TMS treatment' samples

Classifiers: the microbial density data – 200 of the most common ASVs

Aim of RF: predict if microbiota composition after 6 months was more similar to microbiota composition at the start of the study or during TMS treatment

More similar to pre-treatment than treatment after approx. 3 weeks (except E), however only 75% of votes reached at most in all horses

The resistome changes and increases after treatment starts and is still significantly different after 6 months

Code to try (at your own leisure)

- ML4Microbiome online course material
- Folder "11. Challenge"
- Either run Jupyter notebook on own machine, on Google Colab (free) or on the Utrecht University server (ask for access)

VM image available on request (100gb) <u>https://drive.google.com/drive/folders/1RKWnKEDR</u>
 <u>F7ZkVlbltO8FADF_yhBuXglB</u>

Questions – part 2

• Unpublished, but submitted soon

Thank you!

- Roosmarijn Luiken
- Mathijs Theelen
- Jaap Wagenaar
- Amelieke Cremers
- Daniela Ferreira

Radboudumc

