How AI is enhancing human microbiome research
Outline

1. Defining Artificial intelligence (AI)
2. AI for microbiome data
3. Current AI challenges for microbiome data
Defining Artificial intelligence (AI)
AI: a trendy topic

[Artificial intelligence for genomic medicine Report]
What do we mean by AI?

AI = development and use of **computing systems** concerned with making machines work in an **intelligent way**

[Artificial intelligence for genomic medicine Report]

Artificial intelligence

- **Narrow AI**
 - Focuses on performing one specific task

- **General AI**
 - Sentient machine with ‘human’ reasoning

Machine learning

Deep learning
First generation of AI: rule based systems

Encoding the knowledge of a **human expert** in an **automated system**

Limitations
- Expensive and long to build (in-depth expertise)
- Difficult to develop (complex systems)
- Rigid (manual updates)

Advantages
- Highly interpretable

Ex: Clinical decision support systems
Machine Learning

Set of methods based on algorithms that use mathematical procedures to analyze data structuring.

Advantages
• Less demanding to build (data-driven learning)
• Less difficult to encode (rules established by the process)
• More flexible (integration of new data)

Limitations
• More difficult to interpret (especially deep learning)

"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed"

— Arthur L. Samuel, AI pioneer, 1959
The Three Types of Machine Learning Algorithms

- **Unsupervised Learning**
 - No labels
 - No feedback
 - Find an underlying structure in the data

- **Supervised Learning**
 - Labelled data
 - Direct feedback
 - Prediction of an output

- **Reinforcement Learning**
 - A set of rules / No labels
 - Reward system
 - Iterative self-teaching
How unsupervised learning works

STEP 1

TYPES OF PROBLEMS

- **CLUSTERING**
 Identifying similarities in groups

- **ANOMALY DETECTION**
 Identifying abnormalities in data

- **DIMENSIONALITY REDUCTION**
 Concise input for supervised learning

STEP 2

ALGORITHM

- K-means
- Hierarchical Clustering
- Gaussian Mixte Model
- Principal Component Analyses
- Multidimensional scaling (MDS)

Source: adapted from Booz Allen Hamilton
Building a supervised learning model

Data organization and preparation

- Collect, select, prepare data

Select learning approach

- Lasso
- Random forest
- SVM
- ...

Train model

- Parameter optimization

Improve model

Deploy model

Performance criteria

Ethical and regulatory requirements

[Artificial intelligence for genomic medicine Report]
Artificial neural network
Collection of **connected units** (artificial neurons) whose functioning is inspired by **neurons** in the brain.
Deep Learning

Artificial neural network
Collection of connected units (artificial neurons) whose functioning is inspired by neurons in the brain.

Deep Learning
Learning process based on large artificial neural networks (many hidden layers)
Deep Learning

Main applications

- Image recognition,
 facial recognition and object detection
- Natural language processing

https://cs.stanford.edu/people/karpathy/deepimagesent/
Deep Learning

Advantages
• More flexible (modeling very complex relationships)
• Less dependent on prior knowledge of the field

Limitations
• Require huge amount of data
• May be subject to overfitting (generalization to other data)
• Costly calculation (large number of operations)
• Difficult to interpret (extraction of biological knowledge)

Main applications
• Image recognition,
 facial recognition and object detection
• Natural language processing

https://cs.stanford.edu/people/karpathy/deepimagesent/
Deep Learning

Advantages
• More flexible (modeling very complex relationships)
• Less dependent on prior knowledge of the field

Limitations
• Require huge amount of data
• May be subject to overfitting (generalization to other data)
• Costly calculation (large number of operations)
• Difficult to interpret (extraction of biological knowledge)

Main applications
• Image recognition,
 facial recognition and object detection
• Natural language processing

https://cs.stanford.edu/people/karpathy/deepimagesent/

“The question of whether a computer can think is no more interesting than the question of whether a submarine can swim.”
— Edsger W. Dijkstra

a) Husky classified as wolf (b) Explanation
What works in other domains

- **Nature of the data**
 - Images (well known modelling)

 Challenge: microbiome data are not deeply understood

 - Large datasets (ImageNet: 14+ M images)
 - Transfer learning: it is possible to train a neural network on one image category to transfer it to another

 Challenge: much less data available, large heterogeneity

- **Nature of the question**
 - Humans can solve the problem

 Challenge: humans can’t solve the problem

from Chloé-Agathe Azencott
AI for microbiome data
The Three Types of Machine Learning Algorithms

Unsupervised Learning
- No labels
- No feedback
- Find an underlying structure in the data

Supervised Learning
- Labelled data
- Direct feedback
- Prediction of an output

Reinforcement Learning
- A set of rules / No labels
- Reward system
- Iterative self-teaching
Unsupervised learning: enterotypes

Identification of microbiome enterotypes with clustering algorithms

Population stratification is a useful approach for a better understanding of functional, ecological and medical information.

Certain visualizations can cause the eye to perceive discrete clusters to be stronger than they are.
Unsupervised learning: microbial networks

Microbial network construction is a popular explorative data analysis technique...

... to identify taxa sharing a common role in an ecosystem

Unsupervised learning: dimensionality reduction

~10 million genes

~2 000 MGS

~20 guilds

Genes co-varying in abundance as encoded on the same genome

MGS reconstruction

Network inference from MGS co-abundances

The Three Types of Machine Learning Algorithms

Unsupervised Learning
- No labels
- No feedback
- Find an underlying structure in the data

Supervised Learning
- Labelled data
- Direct feedback
- Prediction of an output

Reinforcement Learning
- A set of rules / No labels
- Reward system
- Iterative self-teaching
Supervised learning: diagnostic or prognostic

Common algorithms used for disease-prediction tasks:

- Random forest (RF) / decision trees
- Support vector machines (SVM)
- Gradient boosting
- LASSO / ridge / elastic net regression
- Partial Least square regression (PLS)
- Neural networks
- K-nearest neighbors (KNN)
- ...

Some popular Machine Learning tools

Deep learning for microbiome data

Architectures types

- Convolutional neural networks (CNNs)
- Deep neural networks (DNNs)
- Recurrent Neural Networks (RNNs)
- Auto-encoders (AEs)

Deep learning for microbiome data

Architectures types

- Convolutional neural networks (CNNs)
- Deep neural networks (DNNs)
- Recurrent Neural Networks (RNNs)
- Auto-encoders (AEs)

[Artificial intelligence for genomic medicine Report]
Deep learning for microbiome data

Architectures types

Convolutional neural networks (CNNs)
Deep neural networks (DNNs)
Recurrent Neural Networks (RNNs)
Auto-encoders (AEs)

Deep learning for microbiome data

Architectures types

- Convolutional neural networks (CNNs)
- Deep neural networks (DNNs)
- Recurrent Neural Networks (RNNs)
- Auto-encoders (AEs)

Considerable effort has gone into increasingly powerful deep learning algorithms, but with only minor improvements in performance and modest changes in the ranking of the importance of features.
The Three Types of Machine Learning Algorithms

Unsupervised Learning
- No labels
- No feedback
- Find an underlying structure in the data

Supervised Learning
- Labelled data
- Direct feedback
- Prediction of an output

Reinforcement Learning
- A set of rules / No labels
- Reward system
- Iterative self-teaching

Machine learning
Generative Adversarial Networks to Boost the Performance of Machine Learning in Microbiome

Data-driven simulation of microbiome data using a conditional generative adversarial network

Synthetic samples generated can boost disease prediction
Current AI challenges for microbiome data
Failures in model verification make it impossible to know whether or not a trained model is fit for purpose.

Among 102 articles, 88% of the published AUCs cannot be trusted at face value.

“These findings cast serious doubt on the general validity of research claiming that the gut microbiome has high diagnostic or prognostic potential in human disease.”

High inter-individual variability & limited data available

Integration of French gut in an international project
(MMHP : Million Microbiomes from Humans Project)

Vision and mission of MMHP

- Analyze 1 million microbial samples from intestines, mouth, skin, reproductive tract...
- Build the world’s largest database of human microbiome
- Create solid data foundation for microbiome research
- Draw a microbiome map of the human body

MGP is a founding member of MMHP, officially launched on October 26th, 2019 at the 14th International Conference on Genomics (ICG-14)

MGP participates to MMHP by bringing 100,000 French gut metagenomes

Founding members of the project

https://db.cngb.org/mmhp/

With Partners (Open for collaboration) :
Germany, Italy, The Netherlands, Spain....
Learning from multiple datasets

Federated learning / differential privacy / domain adaptation

Current general approach to machine learning in medicine

Federated approach to machine learning in medicine

https://featurecloud.eu
Integration: learning from heterogeneous data sets

multi-view learning
Take home messages

- **Machine learning** (ML) is an important component of the growing field of artificial intelligence.
- **Deep learning** is a subtype of ML with promising result on some topics
- **Unsupervised, Supervised** and **Reinforcement learning** are the three types of ML algorithms successfully applied to microbiome data
- The **current challenges and active research areas** are the misuse of ML models, high inter-individual variability, federated learning and data integration
Thanks