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Al: a trendy topic
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What do we mean by Al? Ay MGPS .

Al = development and use of computing systems concerned Narrow A'
with making machines work in an intelligent way = (7 ;j%%*
T . . .. 0 Wr ?
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Focuses on performing one specific task

Artificial intelligence

General Al

Machine learning

‘ Sentient machine with ‘human’ reasoning
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First generation of Al: rule based systems A MGPS ..

Encoding the knowledge of a human expert
in an automated system

——3 Output Limitations
* Expensive and long to build (in-depth expertise)

» Difficult to develop (complex systems)

INPULS =—> —> Output * Rigid (manual updates)
3 Output
Advantages
3 Output * Highly interpretable

Ex : Clinical decision support systems

Machine learning R
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Machine Learning A MGPS ..

Set of methods based on algorithms that use mathematical procedures
to analyze data structuring

Advantages

* Less demanding to build (data-driven learning)

* Less difficult to encode (rules established by the process)
* More flexible (integration of new data)

Limitations
* More difficult to interpret (especially deep learning)

“Machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed”

— Arthur L. Samuel, Al pioneer, 1959

Machine learning algorithms ‘learn’ from data
and can improve

Machine learning R
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The Three Types of Machine Learning Algorithms & mgps..

Unsupervised Learning

Supervised Learning

Reinforcement Learning

o @MgpsLab

> No labels
> No feedback
> Find an underlying structure in the data

> Labelled data
> Direct feedback
> Prediction of an output

> A set of rules / No labels
> Reward system
> Iterative self-teaching

Machine learning

A

Clustering

A

Classification
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How unsupervised learning works A MGPS ..

TYPES OF PROBLEMS

(54 ) [p—a) PN (P (7 CLUSTERING
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Gaussian Mixte Model »
Principal Component Analyses \% EEDUC-TIOT
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!.Vfl?ltldlmensmnal scaling (MDS) e ) :J ﬁ SuperVisedpleaming
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Building a supervised learning model A MGPS ..

Data organization
and preparation

Collect, select,
prepare data

Performance criteria
pELALGL R Ethical and regulatory
requirements

Train model

Improve model

Select learning
approach

Parameter

Lasso optimization

Random forest
SVM
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Deep Learning MgpPS..

Artificial neural network pendries )
A wi

CeIII?"?dy .
Collection of connected units (artificial neurons) whose | ) smae
functioning is inspired by neurons in the brain.  heon Nl w2

g s inspired by TS (2)—= O

Nucleus & / N
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Deep Learning MYPS..

Artificial neural network

Dendrites
Celll?gf’dx N
Collection of connected units (artificial neurons) whose Ky syapses
functioning is inspired by neurons in the brain. B f ren \mé//

/ | \
Nucleus %, ,,;j:-,\

Deep Learning

Learning process based on large artificial neural
networks (many hidden layers) inputayer

Hidden oners
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Deep Learning

1.12 woman
-0.28 in

1.23 white
1.45 dress
0.06 standing
(.13 with
3.58 tennis
1.81 racket
0.00 two
0.05 people
-0.14 1n
0.30 green
-0.09 behind
-0.14 her

[ ] . 2 BN

https://cs.stanford.edu/people/karpathy/deepimagesent/

Main applications
* Image recognition,

facial recognition and object detection
* Natural language processing
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Deep Learning A MGPS .

1.12 woman
. 058 & Advantages
rrevous rs [ETEERNE * More flexible (modeling very complex relationships)

145 dress * Less dependent on prior knowledge of the field
0.06 standing

0,13 uh Limitations

tems e Require huge amount of data

::)l :C:u * May be subject to overfitting (generalization to other data)
0,05 people * Costly calculation (large number of operations)

0.14 in * Difficult to interpret (extraction of biological knowledge)
0.30 green

-0.09 behind

-0.14 her

Main applications
* Image recognition,

facial recognition and object detection
* Natural language processing
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Deep Learning
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Main applications
* Image recognition,

facial recognition and object detection
* Natural language processing
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Advantages
More flexible (modeling very complex relationships)

Less dependent on prior knowledge of the field

Limitations

Require huge amount of data

May be subject to overfitting (generalization to other data)
Costly calculation (large number of operations)
Difficult to interpret (extraction of biological knowledge)

i

a) Husky classified as wolf

(b)

Explanation

“The question of whether a computer can think is no more
interesting than the question of whether a submarine can
swim.”

— Edsger W. Dijkstra

Fomc®
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Application of Deep Learning for microbiome? A MGPS ..

What works in other domains

* Nature of the data
_— * Images (well known modelling)
@ Challenge: microbiome data are not deeply understood

* Large datasets (ImageNet: 14+ M images)

* Transfer learning : it is possible to train a neural network on one image
category to transfer it to another

Challenge: much less data available, large heterogeneity

* Nature of the question
* Humans can solve the problem
Challenge: humans can’t solve the problem

from Chloé-Agathe Azencott
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The Three Types of Machine Learning Algorithms

Unsupervised Learning

o @MgpsLab

> No labels
> No feedback
> Find an underlying structure in the data

> Labelled data
> Direct feedback
> Prediction of an output

> A set of rules / No labels
> Reward system
> Iterative self-teaching

Machine learning

A

Clustering

Classification
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° ° . metagenopolis
Unsupervised learning: enterotypes MQPS -
dentification of microbiome enterotypes Certain visualizations can cause the
with clustering algorithms  You? eye to perceive discrete clusters to be
* stronger than they are
0.50
E o~
0.254 ... z . o ) .
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§ 0.001 ° é.l t:
« 4 F é o
.o : .. (] (-]
- " B . o fo . . » .... .. .. °
o Population stratification is a useful approach ¢ ¥ e "
Escherichia . . ° .'. 8°
T for a better understanding of functional, o "
PCoA 1 . . . . ® o
ecological and medical information. °
Salosensaari, Aaro, et al. Nature Costea, Paul [, et al. Nature Knights, Dan, et al. Cell host &
E communications 12.1(2021): 1-8. IE microbiology 3.1 (2018): 8-16 E microbe 16.4 (2014): 433-437.
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Unsupervised learning: microbial networks A MGPS ..

Fusobacteriaceae

Microbial network construction is a popular =~ Mmoo S
. . . 7 Dilisteracese Pasteurellaceae ‘ <
explorative data analysis technique. .. Moo Moot/
Peptostrptococcaceac [ Megasphaeraceae / . Bacteroidaceae

. Bifidobacteriaceae

B _ _
=

'
L

Erysipelatoclostridiaceae
. Prevotellaceae

[}
\/.
‘ Bacteroides dorei

7\

... to identify taxa sharing a

Faust, Karoline. "Open challenges for microbial network H
E construction and analysis.” The ISME Journal (2021): 1-8. common r0|e Inan ECOSYStem
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Unsupervised learning: dimensionality reduction A MGPS ..

~10 million genes ~2 000 MGS ~20 quilds

MGS reconstruction

ﬁ

Network inference
O from MGS co-abundances )

Genes co-varying in abundance
as encoded on the same genome

Plaza Ofiate, Florian, et al. Bioinformatics
E 35.9(2019): 1544-1552.
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The Three Types of Machine Learning Algorithms & mgps..

Supervised Learning

o @MgpsLab

> No labels
> No feedback
> Find an underlying structure in the data

Clustering

A

> Labelled data
> Direct feedback
> Prediction of an output

Classification

> A set of rules / No labels
> Reward system
> Iterative self-teaching
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Supervised learning: diagnostic or prognostic A MGPS ..

Common algorithms used for Machine Learning Meta-analysis of Large
disease-prediction tasks : Metagenomic Datasets: Tools and Biological
Insights

* Random forest (RF) / decision trees

ROC curves

e Support vector machines (SVM)
 Gradient boostin
e LA id |g ' i 8 0.8y 1 = Cirrhosis

SSO / ridge / elastic net regression © o ColGracEs)
» Partial Least square regression (PLS) Y 0.6 | wm IBD
* Neural networks = w= Obesity

. o) mm 2D
e K- 0.4} '
K-nearest neighbors (KNN) 3 WT2D

* E 05 — True labels

Marcos-Zambrano, Laura Judith, et al. Moreno-Indias, Isabel, et al. . | - - Shuffled labels
E Frontiers in microbiology 12 (2021): 313 E Frontiers in Microbiology 12 (2021): 277. 0.0 | | |

. i 0.0 0.2 04 0.6 0.8 1.0

Some popular Machine Learning tools False positive rate

\_\

I— Pasolli, Edoardo, et al. PLoS computational
E biology 12.7 (2016): €1004977.

LET'S BUILD A ! scikit |
ML MODEL /D,
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,'/ W
"/j,""'/tidymodels N
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Deep learning for microbiome data A MGPS ..

Architectures types

Convolutional neural Deep neural networks Recurrent Neural
networks (CNNs) (DNNs) Networks (RNNs)

Auto-encoders (AEs)
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[ Convolutional

- _ layer

Filter
r LaPierre, Nathan, et al.
https://datakeen.co/en/3-deep-learning-architectures-explained-in-human-language/ 4 MethOdS 166 (2019) 74_82
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Deep learning for microbiome data A MGPS ..

Architectures types
Convolutional neural Deep neural networks Recurrent Neural Auto-encoders (AEs)
networks (CNNs) (DNNs) Networks (RNNs)
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Input layer Output layer

Data
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Deep learning for microbiome data A MGPS ..

Architectures types
Convolutional neural Deep neural networks Recurrent Neural Auto-encoders (AEs)
networks (CNNs) (DNNs) Networks (RNNs)

‘Oscar Wilde’
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“The” “man” “took™ “belvedere.”

https://datakeen.co/en/3-deep-learning-architectures-explained-in-human-language/
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Deep learning for microbiome data A MGPS ..

Architectures types
Convolutional neural Deep neural networks Recurrent Neural Auto-encoders (AEs)
networks (CNNs) (DNNs) Networks (RNNs)
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I_ Oh, Min, and Liging Zhang. » /! @
E Scientific reports 10.1(2020): 1-9. — Latent

Representation Classifier
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Deep learning for microbiome data A MGPS ..
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IBD EW-T2D C-T2D Obesity Cirrhosis Colorectal

Disease prediction performance for abundance profiles-based models

AUC

mPCAbased  minor improvements in
“RPbased  performance and modest
changes in the ranking of
the importance of

features.

Considerable effort has
|| ‘ gone into increasingly
N aveeomicre  POWerful deep learning
| | svetam.  algorithms, but with only
|

IE LaPierre, Nathan, et al.
E Oh, Min, and Liqing Zhang. 7 Methods 166 (2019): 74-82.

Scientific reports 10.1 (2020): 1-9.
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The Three Types of Machine Learning Algorithms & mgps..

Reinforcement Learning

o @MgpsLab

> No labels
> No feedback
> Find an underlying structure in the data

Clustering

> Labelled data
> Direct feedback
> Prediction of an output

Classification

> A set of rules / No labels
> Reward system
> Iterative self-teaching

Machine learning ‘a8
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Generative Adversarial Networks to Boost the

Performance of Machine Learning in Microbiome *¥MYps-.

Data-driven simulation of microbiome data using
a conditional generative adversarial network

Training PCOA Generated PCOA Combined PCOA Original vs Generated ROC AUC Values
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-0.3 1 » @ —0.3 A % X ~0.3 }. ° e
L PN % X }( x X B [ Original
—0.4- ° e x X X Xg ] CGAN ‘
-0.2 0.0 0.2 0.4 0.6 ~0.2 0.0 0.2 0.4 0.6 -0.2 0.0 0.2 0.4 0.6 Logistic Regression MLPAN
Method
PC1 PC1 PC1

e IBD (Original) x  IBD (Synthetic) e Healthy (Original) x Healthy (Synthetic)

Synthetic samples generated
IE Reiman, Derek, and Yang Dai. "Using Conditional Generative Adversarial Networks to can bOOSt disease prEdi(tion

Boost the Performance of Machine Learning in Microbiome Datasets." bioRxiv (2020).
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Misuse of machine learning models AQF MGPS .

Failures in model verification make it impossible to know
whether or not a trained model is fit for purpose

TEST_USE EXT_USE Among 102 articles 88% of the published
L 1 AUCs cannot be trusted at face value.

0.9 - I

0.8+ '

0.7 - I
2 °

FALSE  TRUE FALSE  TRUE

“These findings cast serious doubt on the general validity of
research claiming that the gut microbiome has high diagnostic
or prognostic potential in human disease.”

® O—0

AUC

*—oe

I_ Quinn, Thomas P. "A Systematic Review of Human Gut Microbiome Research Suggests
E Widespread Misuse of Machine Learning." arXiv preprint arXiv:2107.03611 (2021).
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Inter-individual variability

High inter-individual variability

& limited data available

80 -

70 7N
v 60 H ] / \ —.}/|
_g 50 | ow geﬂe count / \ —— Bacteroides
= / N <\ e Prevotella
= \ ,,/ . — _ Ruminococcus
= N\ 2 N
5 30 pi 7 ~_
= N \ High gene count
= 20 5

10 :

0 — T
0 200 000 400 000 600 000 800 000 1000 000
Gene count

I_ Marteau, Philippe, and Joél Doré.
E Ed John Libbey (2017).
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Discovery cohort Validation cohort
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I— Qin, Nan, et al. Nature
E 513.7516 (2014): 59-64.
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Integration of French gut in an international project
(MMHP : Million Microbiomes from Humans Project)

Vision and mission of MMHP Founding members of the project
 Analyze 1 million microbial samples from intestines, mouth, ....................................

skin, reproductive tract... P—
*  Build the world'’s largest database of human microbiome
e Create SO|Id data foundatlon for microbiome research

- .DTU

MGP is a founding member of MMHP, officially launched N0 rrance D Stang Nl Rsercn
on October 26th, 2019 at the 14th International E——— - ComertoretbolcDseses

Conference on Genomics (ICG-14)

https://db.cngb.org/mmhp/

MGP participates to MMHP by bringing 100,000 French With Partners (Open for collaboration) :
gut metagenomes Germany , Italy, The Netherlands, Spain....
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metagenopolis

Learning from multiple datasets MQgPS...

Federated learning / differential privacy / domain adaptation

Current general approach to Federated approach to
machine learning in medicine machine learning in medicine

nnnnnnnnnnnnnnnnnnnnn
directly to cloud server

HOSPITAL B
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< |
]
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]
1 o o’
eeeeeeeeeeeeee (patient data B) : )
and small local Al i % I |I |
HOSPITAL C
s

llllllllllllll (patient data C)
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metagenopolis

Integration: learning from heterogeneous data sets X} mgps..

multi-view learning

0 @MgpsLab

|

Metagenomics

Metatranscriptomics

Metaproteomics

Metabolomics

(linical data
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Take home messages

* Machine learning (ML) is an important component of the growing field of artificial
intelligence.

* Deep learning is a subtype of ML with promising result on some topics

* Unsupervised, Supervised and Reinforcement learning are the three types of ML
algorithms successfully applied to microbiome data

* The current challenges and active research areas are the misuse of ML models,
high inter-individual variability, federated learning and data integration
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