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WG3 Objectives and major deliverables

Objectives:

To optimise and standardize the use of state-of-the-art ML techniques, resulting in best practice
SOPs specific to various microbiome data types, human body ecosystems and research
questions. The WG3 will also investigate opportunities for automating the established SOPs into
pipelines for translational use by clinicians and non-experts.

Major Deliverables:

D3.1: [oct - dec 2021] A decision tree of ML/Stats methods along with optimised parameters
suitable for various data types, ecosystems and research questions (disseminated through
Web-portal and GitHub).

D3.2: [april - jun 2022] A publication and white-paper describing the SOPs emanating from D3.1.

D3.3: [july - sept 2022] A report outlining areas suitable for automation
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Summary of WG3 progress (2019-2021)

Several threads of research, from different groups and collaborations. For the moment, mainly analysis on publicly
available datasets (mainly 16s). (...this is not an exhaustive list)

Explain the observed diversity in human microbiome (University of Turku, Finland)

Predicting the onset of Type2 diabetes with AutoML using microbiome data (Dept. of Computer Science,
University of Bari Aldo Moro, Bari, Italy - Institute of Genomics, University of Tartu, Tartu, Estonia)

Probabilistic distribution of taxonomic units (Ss. Cyril and Methodius University in Skopje, North Macedonia)

Clustering and classification of human microbiome data (University of Novi Sad, Serbia- University of Ljubljana,
Slovenia)

Comparing different normalization strategies and ML classification methods on 6 different datasets for 5
diseases (Universitat Politécnica de Valencia, Spain)

Analysis of human microbiome data with JADBio (Department of Computer Science, University of Crete,
Greece, FORTH)

Statistical and ML analysis of microbiome data using the logratio methodology of compositional data (Palacky
University, Czech Republic)
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Summary of WG3 progress (2019-2021)

From the studies of the members we started to define a decision tree for SOP,
showing in different data/normalization/pre-processing/algorithms what is the best
approach according to their experience

Example DECISION OPTIONS
Data type? Shotgun Metagenomics
Pre-processing pipeline? 27?7
Variable filter? None Low counts
Normalization/Transformation? TSS CLR
Type of method? Unsupervised Classification Regression
Algorithm? RF NN SVM
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Summary of WG3 progress (2019-2021)

Two main approaches to choose the Operating Procedures to be adopted in the
studies:

e C(Classical experimental & explanatory approach
e Automatic, based on AutoML

A joint work with WG1 has also been conducted to identify and analyze relevant
papers. The standards steps from existing literature will also be included in the
tree when relevant.
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Short talks (07/07/21)

e Karel Hron: Why are microbiome data compositional?

e Andrea Mihajlovic (Tatjana Loncar Turukalo): Inflammatory bowel disease
prediction based on metagenomics data

e Magali Berland: Extensive benchmark of machine learning methods for
microbiome data

e Michelangelo Ceci: Predicting the onset of Type2 diabetes through the
analysis of microbiome data
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Karel Hron: Why are microbiome data compositional?
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Do both representations carry the same information?

@ NOT in absolute scale, YES in relative scale
@ counts can not be estimated from proportions
@ but proportions can be estimated from counts
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Karel Hron: Why are microbiome data compositional?

microbiome data are compositional!!!

@ interest is (or should be) in the relative information carried by proportions
@ the simplex corresponds to the set of possible observations
@ an interpretable measure of difference and scale of variables is available

@ a suitable, well known algebraic-geometric structure allows building coherent models

@ for CoDa, it is better to think in terms of ratios
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Andrea Mihajlovic: Inflammatory bowel disease prediction

based on metagenomics data
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ML4Microbiome  7.7.2021.

Split 01
Split 02

Split 05

Groups

* Machine learning based binary classification
* Two levels: sample and participant
* 10 fold group cross validation

* Evalution — 100 repeats

I Training I Validation
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Andrea Mihajlovic: Inflammatory bowel disease prediction
based on metagenomics data

Res u Its ML4Microbiome ~ 7.7.2021.
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Magali Berland: Extensive benchmark of machine learning
methods for microbiome data
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Magali Berland: Extensive benchmark of machine learning
methods for microbiome data
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Michelangelo Ceci: Predicting the onset of Type2
diabetes through the analysis of microbiome data

Data Source: data from METSIM cohort?!

Pre-processing steps on microbiome data:
* Total Sum Scaling (TSS)

* Centered Log-ratio Transformation (CLR)
* Isometric Log Ratio (ILR)

Settings:
* Supervised (887 patients, excluding those with missing values in the target attributes)

Task:

* Learn multiple classification models (one for each target attribute)
Target Variables:
Considered approaches: e  Insulin AUC measured after the OGTT test (auc_ins)
*  AutoWEKA? (AutoML approach) Disposition index (disposition)
1. </ /www.ncbi.nlm.nih, i i Post-load glucose (gl120)
& https://www.cs.ubc. ca[labs[beta[Pra jects/aut toweka{ . . . .
Fasting insulin (ins0)

Post-load insulin (ins120)

Matsuda insulin sensitivity index (matsuda)
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Michelangelo Ceci: Predicting the onset of Type2
diabetes through the analysis of microbiome data

Why AutoML?

@ Data set
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? Filter of descriptors
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Statistical Tests
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Feature selection

Attri
Attri

Alg

bute search: BestFirst; GreedyStepwise
bute Evaluation: CfsSubsetEval

orithms Paramenters
J48

DecisionTable
GaussianProcessed
M5P
LogisticModelTrees
PART

SMO

BayesNet
NaiveBayes

Jrip

SimpleLogistic
LinearRegression
SGD



Predicting the onset of Type2

Michelangelo Cec

biome data
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Discussion and future actions/collaborations (2021-2022)

e WG3 actions
o Decision tree (oct 21) = Monthly meetings to complete the tree from our experience
m Next meeting: September 10th, 10:00-12:00 CET

o SOPs & publication (april 22) = Need for standard dataset from WG2 to bring reproducible
standards out

o  Automation report (july 22)
e WG3 group (12): Magali Berland, Michelangelo Ceci, Sonia Tarazona

o Andrea Mihajlovic, Tatjana Loncar Turukalo, Jill O’Sullivan, Julia Eckenberger, Karel Hron,
Yorgos Papoutsoglou, Enrique Carillo (WG1), Kanita Karadjuzovic Hadziabdic (WG1), Marta
Belchior Lopes
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